Module length

Let M be an R-module. Instead of looking at increasing chains of submodules, like w/ Noetherian modules, we consider decreasing chains.

Def: M is Artinian if every strictly decreasing chain of submodules terminates (or ideals in the case of rings).

We'll soon see that all Artinian rings are always Noetherian. In fact, weill prove something much stronger.

However the converse doesn't necessarily hold:

Ex: $k[x]$ is Noetherian by the Hilbert Basis Theorem. However $(x) \nsupseteq\left(x^{2}\right) \not \supset\left(x^{3}\right) \not \supset \cdots$ doesn't terminate, so it's not Artinian.

First some definitions:
$M=M_{0} \supsetneq M_{1} \supsetneq \ldots \supsetneq M_{n}$ is $a^{\text {(descending) }}$ chain of submodules of length n.
The chain is a composition series if each M_{j} / μ_{j+1} is a nonzero simple module (i.e. it has no nonzero proper submodules).

Equivalently, a composition series is a max'l chain of submodules

The length of $M, l(M)$, is the least length of a composition series, or ∞ if it has no finite composition series. (In fact, we'll see that all composition series have the same length.)

Remark: Since M_{i} / M_{i+1} is simple, it is generated by any nonzero element a. So, we get
$R \rightarrow M_{i} / M_{i+1}$ with kernel

$$
P=\left\{r \in R \mid r\left(M_{i} / M_{i+1}\right)=0\right\}=\operatorname{Ann}\left(M_{i} / M_{i+1}\right) \text {, so }
$$

$M_{i} / M_{i+1} \cong R / P$. Since the module is simple, P must be maximal.

Lemma: If M has a finite composition series of length n, then every composition series has length n, and every chain in M can be extended to a composition series.

Pf: Let $N \subsetneq M$ be a proper submodule. We first show that $\ell(N)<\ell(M)$.

Let $\left(M_{i}\right)$ be a composition series of M of minimal length. set $N_{i}=N \cap M_{i}$.

Then $\frac{N_{i-1} / N_{i} \subseteq \frac{M_{i-1}}{M_{i}}, ~ s o ~ e i t h e r ~}{N_{i-1}} N_{i}$ is simple or $N_{i-1}=N_{i}$.
Thus, by removing repeated terms, we get a composition series for N, so $l(N) \leq \ell(M)$.

If $l(N)=l(\mu)=l$, then $\quad N_{i-1} / N_{i}=M_{i-1} / M_{i}$ for each i, so $\quad M_{l-1}=N_{l-1} / O \Rightarrow$ by induction $N=M$, a contradiction.

Now let $M=M_{0} \supset M_{1} \supsetneq \ldots$ be any chain in M. Then $l(M)>l\left(M_{1}\right)>\ldots>0$, so the length of the chain must be $\leq l(M) \leq n$. (In particular, $l(M)=n$, so all composition series have the same length.)

If a chain has length $l(M)$, it thus must be a composition series. Otherwise, it has length $<\ell(M)$ and new terms can be inserted until it has length $l(M)$. D

Thu: M has a finite composition series iff M is Artinian and Noetherian.

Pf: Suppose M is Artinian and Noetherian. By $A C C$, we can find a axil proper submodule M_{1}, a $\max ^{\prime} l$ submodule M_{2} of M_{1} etc. By DCC, this terminates in finitely many steps.

If M has a finite composition series, the lemma says every chain of submodules has finite length.

Now we come back to rings to see how we can interpret Artinianness geometrically.

Thu: Let R be a ring. The following are equivalent:
a.) R is Noetherian and all its prime ideals are maximal.
b) R is a finite length R-module
c.) R is Artinian.

Pf: a.) \Rightarrow b.) Exercise (see Eisembuel)
b.) $\Rightarrow c$.$) by previous theorem.$
c.) \Rightarrow a.) Suppose R is Artinian.

Claim: (0) is a product of maxi ideals.
Pf of Claim: R is Artinian \Rightarrow we can choose an ideal J that is minimal among products of max'l ideals.

Thus, for all max'l $m \subseteq R$, we have $m J=J$, so $J \subseteq J(R)$ and $J^{2}=J$.

Assume $J \neq 0$, and choose I minimal among ideals not annihilating J. Then $(I J) J=I J^{2}=I J \neq 0$. So by minimality, $I J \supseteq I$, and thus $I J=I$.

Take $f \in I$ s.t. $f J \neq 0$. By minimality $(f)=I$.

Since $I J=I, \exists g \in J$ s.t. $f g=g \Leftrightarrow f(1-g)=0$.
But g is in every maxi ideal, so $1-g$ is in none, so 1-g is a unit, so $f=0$, a contradiction. Thus $J=0$.

Thus, we now have $0=m_{1} \ldots m_{t}$ for m_{i} max'l ideals.

Set $M_{s}=m_{1} \ldots m_{s}$. Then we have

$$
R \supseteq M_{1} \supseteq M_{2} \supseteq \ldots \supseteq M_{t}=0
$$

M_{s} is an R-module, so $M_{s} / M_{s+1}=M_{s} / m_{s+1} M_{s}$ is an (R / m_{s+1})-vector space. Any descending chain of subspaces corresponds to a chain of ideals in R which is finite, so M_{s} / M_{s+1} is finite dimensional.

Thus, we can add in finitely many modules to complete this to a finite composition series for R, so R is Noethevian.

Now we just need that all prime ideals are maximal.

Let $P \subseteq R$ prime. Then $P \supseteq m_{1} \cdots m_{t}=0$. Thus, $P \supseteq m_{i}$ for some i (otto wise find $a_{1} \ldots a_{t} \in P$ s.t. $a_{i} \notin P$).

Thus P is $\max 1$.

Note that the last part of the proof implies the Allowing:

Cor: If R is Arfinian, then $\operatorname{spec} R$ is finite. (Converse is false: $\left.\mathbb{C}[x]_{(x)}\right)$

In the case where R is an Artinian k-algebra, we have $R \cong k^{l}$ as k-vector space, and $l=$ length of R.

Ex: 1.) $R=\frac{k[x, y]}{(x, y)}$. Spec $R=\{(0)\}$ and R has length one

$$
R \supseteq(0)
$$

Also, $\frac{k[x, y]}{(x, y)} \cong k$.
2.) $R=\frac{k[x]}{(x-1) x}$. $\operatorname{spec} R=\{(x),(x-1)\}$.

$$
R=k \mid \oplus k x \cong k^{2}
$$

Composition series: $R \supsetneq(x) \supsetneq(0)$.
3.) $R=\frac{k[x, y]}{\left(x, y^{2}\right)}$. Spec $R=\{(x, y)\}$ but $R \cong k l \oplus k y \cong k^{2}$

Composition series: $R \supseteq(y) \supsetneq(0)$.
Spec R corresponds to a "scheme-y" point:
? a point $w /$ a tangent direction.

Think of this as roughly the limit of two colliding points on a line

We need one more theorem (without proof) that will be useful when we come back to dimension.

Theorem: Let M be an R-module of finite length, $P \subseteq R$ prime. Then $M=M_{p} \Leftrightarrow M$ is annihilated by a power of P.

Note that we need finite length:

Ex: $M=\mathbb{C}[x, y] /\left(x^{2}, x y\right)$ is a $\mathbb{C}[x, y]$-module. It has infinite length: $M \ngtr(y) \not \supset\left(y^{2}\right) \supsetneq \ldots$

Let $P=(x)$. Then $P^{2} M=0$, but $M_{p}=\mathbb{C}[x, y]_{(x)}^{(x)} \neq M$.

Cor: let R be Noethurian, $I \subseteq R$ an ideal. If $P \supseteq I$ is prime then the following are equivalent:
a.) P is minimal among primes containing I.
b.) R_{p} / I_{p} is Artinion
c.) $P_{p}^{n} \subseteq I_{p}$ for $n \gg 0$.

Pf a.) \Rightarrow b.): If P is minimal among primes containing I, then it's the unique prime of R_{p} / I_{p}. Thus R_{p} / I_{p} is Artinian (since all primes are max il).
b.) \Rightarrow c. $): R_{p} / I_{p}$ Artinian + Noetherian $\Rightarrow l\left(R_{p} / I_{p}\right)<\infty$.
$\left(R_{p} / I_{p}\right)_{p}=R_{p} / I_{p}$, so by the theorem,

$$
\begin{aligned}
& P^{n} \subseteq \operatorname{Ann}_{R}\left(R_{p} / I_{p}\right) \text { for } n \gg 0 \\
\Rightarrow \quad & P_{p}^{n} \subseteq \operatorname{Ann}_{R_{p}}\left(R_{p} / I_{p}\right)=I_{n} .
\end{aligned}
$$

c.) \Rightarrow a.): Suppose $P_{p}^{n} \subseteq I_{p}$, and let $Q \subseteq R$ a prime ideal sit. $I \subseteq Q \subseteq P$. Then $P_{p}^{n} \subseteq Q_{p}$. Since Q_{p} is prime,

$$
P_{p} \subseteq Q_{p} \Rightarrow P_{p}=Q_{p} \Rightarrow p=Q
$$

